网站渗透

黑客攻防,ddos攻击,中国红客联盟,攻击服务器,黑产,拿站

关于破解斯托克斯方程奖励初代战甲的信息

本文目录一览:

韩国科学家赵庸民称已破解世界七大数学难题之一是什么?

近日,韩国数学家破解出了世界“七大数学难题(Millennium Problem)”中的一题。该问题悬赏金额为100万美元。

17日,韩国建国大学宣布,该校赵庸民教授数学(物理学)研究组破解出了世界七大数学难题中的“杨-米尔斯存在性和质量缺口假设(Yang-Mills and Mass Gap)”(杨-米尔斯理论)一题。赵庸民教授是粒子物理学理论、宇宙论以及统一场领域的理论物理学家。

所谓“七大数学难题”是由美国克雷数学研究所(Clay Mathematics Institute, CMI)提出的。2000年5月24日,克雷数学研究所宣布,该机构收集了数学历史上极其重要的七道经典难题,而解答出其中任何一题的第一个人将获得100万美元奖金。因此,这七道题也被称为“七大数学难题”。这七道题分别是P与NP问题(NP完全问题)、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口假设(杨-米尔斯理论)、纳维叶-斯托克斯方程(纳卫尔-斯托可方程)、贝赫和斯维讷通-戴尔猜想(BSD猜想)。

目前为止,这七道题中只有庞加莱猜想被破解。

据悉,此次赵教授的算法虽然已刊登在国际权威物理学期刊上,却还没有得到克雷数学研究所的认证。克雷数学研究所要通过最长两年的时间来证明这个解题过程是否正确。

“世纪难题”之六:纳威厄-斯托克斯方程讲的是什么呢?

起伏的波浪跟随着我们正在湖中蜿蜒穿梭的小船,湍急的气流跟随着现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳威厄-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳威厄-斯托克斯方程中的奥秘。

“世纪难题”之六:纳威厄-斯托克斯方程讲的是什么?

起伏的波浪跟随着我们正在湖中蜿蜒穿梭的小船,湍急的气流跟随着现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳威厄-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳威厄-斯托克斯方程中的奥秘。

斯托克斯方程

估计指的就是斯托克斯公式。 楼上说的面积分内容,任何一本数学分析教材在多元微积分一章里都会提到的,可以去看看。

斯托克斯公式是牛顿微积分公式的推广,大意就是说, 在一个几何区域上求积分的问题可以转化到在该区域的边界上求积分。其哲学思想是, 边界的信息决定了区域内部的性状。

比如在我们平时说的一元微积分里面, 求积分的区域通常是一个闭区间, 它的边界就是两个端点。 牛顿公式就是把区间上的求积问题转化为求被积函数在该区间两个端点上的值(也可以看成端点上的积分)。

楼上说的是曲面情形, 更一般的可以推广到任何n维流形上,这里就不讲了。

纳维叶―斯托克斯方程指的是什么?如何解释……

简介 NS方程,全称:纳维叶-斯托克斯(Navier-Stokes)方程 ,2000年5月24日,美国克莱数学研究所的科学顾问委员会把NS方程列为七个“千禧难题”(又称世界七大数学难题)之一,这七道问题被研究所认为是“重要的经典问题,经许多年仍未解决。”克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。另外六个“千年大奖问题”分别是: NP完全问题, 霍奇猜想(Hodge),黎曼假设(Riemann),杨-米尔斯理论(Yang-Mills),庞加莱猜想和BSD猜想(Birch and Swinnerton-Dyer)。 1.NS方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解NS方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在NS方程中的奥秘。 2.深度描述 描述粘性不可压缩流体动量守恒的运动方程。简称N-S方程。因1821年由C.-L.-M.-H.纳维和1845年由G.G.斯托克斯分别导出而得名。在直角坐标系中,其矢量形式为=-Ñp+ρF+μΔv,式中ρ为流体密度,p为压强,u(u,v,w)为速度矢量,F(X,Y,Z)为作用于单位质量流体的彻体力,Ñ为哈密顿算子 ,Δ为拉普拉斯算子。后人在此基础上又导出适用于可压缩流体的N-S方程。N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。例如当雷诺数Re1时,绕流物体边界层外 ,粘性力远小于惯性力 ,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。在计算机问世和迅速发展以后,N-S方程的数值求解才有了很大的发展。 在解释纳维-斯托克斯方程的细节之前,首先,必须对流体作几个假设。第一个是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强,速度,密度,温度,等等。该方程从质量,动量,和能量的守恒的基本原理导出。对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为Omega,而其表面记为partialOmega。该控制体积可以在空间中固定,也可能随着流体运动。

  • 评论列表:
  •  听弧乘鸾
     发布于 2022-07-03 14:05:32  回复该评论
  • 的假设是所有涉及到的场,全部是可微的,例如压强,速度,密度,温度,等等。该方程从质量,动量,和能量的守恒的基本原理导出。对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为Omega,而其表面记为partia
  •  只影并安
     发布于 2022-07-03 10:59:14  回复该评论
  • ,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳威厄-斯托克斯方程中的奥秘。“世纪难题”之六:纳威厄-斯托克斯方程讲的是什么?起伏的波浪跟

发表评论:

«    2023年7月    »
12
3456789
10111213141516
17181920212223
24252627282930
31
标签列表
文章归档

Powered By

Copyright Your WebSite.Some Rights Reserved.